Saturday 28 October 2017

Gleitende Durchschnittliche Filterreihenfolge


Frequenzgang des laufenden Mittelfilters Der Frequenzgang eines LTI-Systems ist die DTFT der Impulsantwort, die Impulsantwort eines L-Sample-gleitenden Mittelwerts Da der gleitende Mittelwert FIR ist, reduziert sich der Frequenzgang auf die endliche Summe We Kann die sehr nützliche Identität verwenden, um den Frequenzgang zu schreiben, wo wir ae minus jomega haben lassen. N 0 und M L minus 1. Wir können an der Größe dieser Funktion interessiert sein, um zu bestimmen, welche Frequenzen durch den Filter ungedämpft werden und welche gedämpft werden. Unten ist ein Diagramm der Größe dieser Funktion für L 4 (rot), 8 (grün) und 16 (blau). Die horizontale Achse reicht von Null bis pi Radiant pro Probe. Man beachte, daß der Frequenzgang in allen drei Fällen eine Tiefpaßcharakteristik aufweist. Eine konstante Komponente (Nullfrequenz) im Eingang durchläuft das Filter ungedämpft. Bestimmte höhere Frequenzen, wie z. B. pi 2, werden durch das Filter vollständig eliminiert. Wenn es aber die Absicht war, ein Tiefpassfilter zu entwerfen, dann haben wir das nicht sehr gut gemacht. Einige der höheren Frequenzen werden nur um einen Faktor von etwa 110 (für den 16-Punkte-gleitenden Durchschnitt) oder 13 (für den vier-Punkte-gleitenden Durchschnitt) gedämpft. Wir können viel besser als das. (1-exp (-iomega)) H8 (18) (1-exp (- & omega; & sub4; (1-exp (-iomega)) (1-exp (-iomega)) (1-exp (& ndash; (Alpha xn) (1 - alpha) yn - 1 Wie kann ich den Parameter alpha st wählen? Das IIR annähernd so gut wie möglich die FIR, die das arithmetische Mittel der letzten k Proben ist: Wo n in k, infty), was bedeutet, dass der Eingang für den IIR länger als k sein kann und dennoch Id die beste Annäherung der haben Mittelwert der letzten k Eingänge. Ich weiß, die IIR hat unendliche Impulsantwort, daher Im auf der Suche nach der besten Annäherung. Id für die analytische Lösung glücklich sein, ob es für oder ist. Wie konnten diese Optimierungsprobleme nur mit der 1. Ordnung IIR gelöst werden. (1 - alpha) yn - 1 genau ndash Es ist verpflichtet, eine sehr schlechte Annäherung zu werden. Can39t Sie leisten, alles, was mehr als ein First-Order IIR ndash leftaroundover Okt 6 11 at 13:42 Vielleicht möchten Sie Ihre Frage bearbeiten, so dass Sie don39t verwenden yn zu zwei verschiedenen Dingen bedeuten, z. Könnte die zweite angezeigte Gleichung zn frac xn cdots frac xn-k1 lesen, und Sie könnten sagen, was genau ist Ihr Kriterium der Quoten gut als möglichequot z. B. Wollen Sie vert yn - znvert so klein wie möglich für alle n, oder vert yn - znvert2 so klein wie möglich für alle n sein. Ndaren Dilip Sarwate Ich weiß, das ist eine alte Post so, wenn Sie sich erinnern können: wie ist Ihre Funktion 39f39 abgeleitet I39ve codiert eine ähnliche Sache, sondern mit den komplexen Übertragungsfunktionen für FIR (H1) und IIR (H2 ) Und dann Summe (abs (H1 - H2) 2). I39ve verglichen dieses mit Ihrer Summe (fj), aber erhalten Sie unterschiedliche resultierende Ausgänge. Dachte, ich würde vor dem Pflügen durch die Mathematik fragen. (1 - alpha) alpha xn - 1 (1 - alpha) 2 yn - 1 ampamp alpha xn (1 - alpha) alpha xn - 1 (1 - alpha) 2 yn - 2 ampamp alpha xn (1 - alpha) alpha xn-1 (1 - alpha) 2 alpha xn-2 (1 - alpha) 3 yn - 3 Ende, so daß der Koeffizient von xn-m alpha (1-alpha) m ist . Der nächste Schritt ist, Derivate zu nehmen und gleich Null zu sein. Betrachtet man ein Plot des abgeleiteten J für K 1000 und Alpha von 0 bis 1, sieht es aus wie das Problem (wie Ive es aufgestellt) ist schlecht gestellt, weil die beste Antwort ist Alpha 0. Ich denke, Theres ein Fehler hier. Die Art und Weise sollte es nach meinen Berechnungen sein: Mit dem folgenden Code auf MATLAB ergibt etwas Äquivalentes zwar unterschiedlich: Jedenfalls haben diese Funktionen Minimum. So können wir annehmen, dass wir uns nur um die Annäherung über die Unterstützung (Länge) des FIR-Filters kümmern. In diesem Fall ist das Optimierungsproblem genau: J2 (alpha) sum (alpha (1-alpha) m - frac) 2 Das Plotten J2 (alpha) für verschiedene Werte von K versus alpha ergibt das Datum in den Diagrammen und der Tabelle unten. Für K 8. alpha 0,1533333 für K 16. alpha 0,08 für K 24. alpha 0,0533333 für K 32. alpha 0,04 für K 40. alpha 0,0333333 für K 48. alpha 0,0266667 für K 56. alpha 0,0233333 für K 64. alpha 0,02 für K 72. alpha 0.0166667 Die roten gestrichelten Linien sind 1K und die grünen Linien alpha, der Wert von alpha, der J2 (alpha) minimiert (ausgewählt aus tt alpha 0: 0,01: 13). Theres eine nette Diskussion dieses Problems in der eingebetteten Signalverarbeitung mit der Mikrosignalarchitektur. Etwa auf den Seiten 63 und 69. Auf Seite 63 ist eine Ableitung des exakten rekursiven gleitenden Durchschnittsfilters (die niaren in seiner Antwort gegeben hat) enthalten. Zur Bequemlichkeit in Bezug auf die folgende Diskussion entspricht sie der folgenden Differenzengleichung: Die Näherung Die den Filter in die von Ihnen angegebene Form bringt, vorausgesetzt, dass x approx y, weil (und ich zitiere aus S. 68) y der Mittelwert von xn Proben ist. Diese Approximation erlaubt es uns, die vorstehende Differenzengleichung wie folgt zu vereinfachen: Einstellen von alpha, erhalten wir zu Ihrer ursprünglichen Form y alpha xn (1-alpha) y, was zeigt, dass der Koeffizient, den Sie (in Bezug auf diese Approximation) genau 1over haben wollen (Wobei N die Anzahl der Proben ist). Ist diese Annäherung die beste in irgendeiner Hinsicht Seine sicherlich elegant. Heres, wie sich die Amplitudenreaktion bei 44,1 kHz für N 3 vergleicht und wenn N auf 10 zunimmt (Annäherung in blau): Wie die Peters-Antwort nahelegt, kann die Annäherung eines FIR-Filters mit einem rekursiven Filter unter einer Kleinste-Quadrate-Norm problematisch sein. Eine ausführliche Diskussion darüber, wie dieses Problem im Allgemeinen gelöst werden kann, finden Sie in JOSs These, Techniken für Digitalfilter Design und System Identifikation mit Anwendung auf die Violine. Er befürwortet die Verwendung der Hankel-Norm, aber in Fällen, in denen die Phasenreaktion keine Rolle spielt, deckt er auch die Kopecs-Methode ab, die in diesem Fall gut funktionieren könnte (und eine L2-Norm verwendet). Einen breiten Überblick über die Techniken in der Arbeit finden Sie hier. Sie können andere interessante Approximationen. Exponential Filter Diese Seite beschreibt exponentielle Filterung, die einfachste und beliebteste Filter. Dies ist Teil des Abschnitts Filterung, der Teil eines Leitfadens zur Fehlererkennung und - diagnose ist. Übersicht, Zeitkonstante und Analogäquivalent Der einfachste Filter ist der Exponentialfilter. Es hat nur einen Abstimmungsparameter (außer dem Probenintervall). Es erfordert die Speicherung nur einer Variablen - der vorherigen Ausgabe. Es ist ein IIR (autoregressive) Filter - die Auswirkungen einer Eingangsveränderung Zerfall exponentiell, bis die Grenzen der Displays oder Computer Arithmetik verstecken. In verschiedenen Disziplinen wird die Verwendung dieses Filters auch als 8220exponentielle Glättung8221 bezeichnet. In einigen Disziplinen wie der Investitionsanalyse wird der exponentielle Filter als 8220Exponential Weighted Moving Average8221 (EWMA) oder nur 8220Exponential Moving Average8221 (EMA) bezeichnet. Dies missbräuchlich die traditionelle ARMA 8220moving average8221 Terminologie der Zeitreihenanalyse, da es keinen Eingabehistorie gibt, der verwendet wird - nur die aktuelle Eingabe. Es ist das diskrete Zeit-Äquivalent der 8220 erster Ordnung lag8221, die üblicherweise in der analogen Modellierung von kontinuierlichen Zeitsteuerungssystemen verwendet wird. In elektrischen Schaltkreisen ist ein RC-Filter (Filter mit einem Widerstand und einem Kondensator) eine Verzögerung erster Ordnung. Bei der Betonung der Analogie zu analogen Schaltungen, ist der einzige Tuning-Parameter die 8220time constant8221, in der Regel als klein geschriebenen griechischen Buchstaben Tau () geschrieben. Tatsächlich entsprechen die Werte bei den diskreten Abtastzeiten genau der äquivalenten kontinuierlichen Zeitverzögerung mit der gleichen Zeitkonstante. Die Beziehung zwischen der digitalen Implementierung und der Zeitkonstante wird in den folgenden Gleichungen gezeigt. Exponentielle Filtergleichungen und Initialisierung Das Exponentialfilter ist eine gewichtete Kombination der vorherigen Schätzung (Ausgabe) mit den neuesten Eingangsdaten, wobei die Summe der Gewichtungen gleich 1 ist, so dass die Ausgabe mit dem Eingang im stationären Zustand übereinstimmt. Nach der bereits eingeführten Filternotation ist y (k) ay (k - 1) (1 - a) x (k) wobei x (k) die Roheingabe zum Zeitschritt ky (k) die gefilterte Ausgabe zum Zeitschritt ka ist Ist eine Konstante zwischen 0 und 1, normalerweise zwischen 0,8 und 0,99. (A-1) oder a wird manchmal die 8220-Glättungskonstante8221 genannt. Für Systeme mit einem festen Zeitschritt T zwischen Abtastwerten wird die Konstante 8220a8221 nur dann berechnet und gespeichert, wenn der Anwendungsentwickler einen neuen Wert der gewünschten Zeitkonstante angibt. Bei Systemen mit Datenabtastung in unregelmäßigen Abständen muss bei jedem Zeitschritt die exponentielle Funktion verwendet werden, wobei T die Zeit seit dem vorhergehenden Abtastwert ist. Der Filterausgang wird normalerweise initialisiert, um dem ersten Eingang zu entsprechen. Wenn die Zeitkonstante 0 nähert, geht a auf Null, so dass keine Filterung 8211 der Ausgang dem neuen Eingang entspricht. Da die Zeitkonstante sehr groß wird, werden Ansätze 1, so dass neue Eingabe fast ignoriert wird 8211 sehr starkes Filtern. Die obige Filtergleichung kann in folgendes Vorhersagekorrektor-Äquivalent umgeordnet werden: Diese Form macht deutlich, dass die variable Schätzung (Ausgabe des Filters) unverändert von der vorherigen Schätzung y (k-1) plus einem Korrekturterm basiert wird Auf die unerwartete 8220innovation8221 - die Differenz zwischen dem neuen Eingang x (k) und der Vorhersage y (k-1). Diese Form ist auch das Ergebnis der Ableitung des Exponentialfilters als einfacher Spezialfall eines Kalman-Filters. Die die optimale Lösung für ein Schätzproblem mit einem bestimmten Satz von Annahmen ist. Schrittantwort Eine Möglichkeit, den Betrieb des Exponentialfilters zu visualisieren, besteht darin, sein Ansprechen über die Zeit auf eine Stufeneingabe aufzuzeichnen. Das heißt, beginnend mit dem Filtereingang und dem Ausgang bei 0 wird der Eingangswert plötzlich auf 1 geändert. Die resultierenden Werte sind nachstehend aufgetragen: In dem obigen Diagramm wird die Zeit durch die Filterzeitkonstante tau geteilt, so daß man leichter prognostizieren kann Die Ergebnisse für einen beliebigen Zeitraum, für jeden Wert der Filterzeitkonstante. Nach einer Zeit gleich der Zeitkonstante steigt der Filterausgang auf 63,21 seines Endwertes an. Nach einer Zeit gleich 2 Zeitkonstanten steigt der Wert auf 86,47 seines Endwertes an. Die Ausgänge nach Zeiten gleich 3,4 und 5 Zeitkonstanten sind jeweils 95,02, 98,17 bzw. 99,33 des Endwerts. Da der Filter linear ist, bedeutet dies, dass diese Prozentsätze für jede Größenordnung der Schrittänderung verwendet werden können, nicht nur für den hier verwendeten Wert 1. Obwohl die Stufenantwort in der Theorie aus praktischer Sicht eine unendliche Zeit in Anspruch nimmt, sollte man an den exponentiellen Filter 98 bis 99 8220done8221 denken, der nach einer Zeit gleich 4 bis 5 Filterzeitkonstanten reagiert. Variationen des Exponentialfilters Es gibt eine Variation des exponentiellen Filters mit dem Namen 8220nonlinearem exponentiellem Filter8221 Weber, 1980. Es soll starkes Rauschen innerhalb einer bestimmten 8220typical8221 Amplitude filtern, aber dann schneller auf größere Änderungen reagieren. Copyright 2010 - 2013, Greg Stanley Teilen Sie diese Seite:

No comments:

Post a Comment